開關(guān)電源,高效率的時代
建設(shè)智能電網(wǎng)已上升至我國國家戰(zhàn)略層面。目前,我國智能電網(wǎng)已進入全面建設(shè)階段,國家電網(wǎng)公司提出,到2020年將全面建成堅強智能電網(wǎng)。智能電網(wǎng)具有信息化、自動化、互動化的特征。
隨著經(jīng)濟不斷發(fā)展計算機廣泛應(yīng)用,一些重要場所:如金融、信息、通訊、公共設(shè)備控制,對電源可靠性、穩(wěn)定性要求高,超大規(guī)模集成電路制造等產(chǎn)業(yè)對電源也有相當(dāng)高要求。
電子設(shè)備特別是計算機的不斷小型化,要求供電電源的體積隨之小型化,因而開關(guān)電源開始替代以笨重的工頻變壓器為特征的線性穩(wěn)壓電源,同時電源效率得到明顯提高。電源體積的減小意味著散熱能力的變差,因而要求電源的功耗變小,即在輸出功率不變的前提下,效率必須提高。
相同體積的電源的功率耗散基本相同,因此,欲得到更大的輸出功率,必須提高效率,同時,高的電源效率可以有效地減小功率半導(dǎo)體器件的應(yīng)力,有利于提高其可靠性。
開關(guān)電源的損耗主要為:無源元件損耗和有源元件損耗
開關(guān)損耗一直困惑著開關(guān)電源設(shè)計者,由于功率半導(dǎo)體器件在開關(guān)過程中,器件上同時存在電流、電壓,因而不可避免地存在開關(guān)損耗,如果開關(guān)電源中開關(guān)管和輸出整流二極管能實現(xiàn)零電壓開關(guān)或零電流開關(guān),則其效率可以明顯提高。
開關(guān)過程引起的開關(guān)損耗大致會占總輸入功率的5%~10%,大幅度降低或消除這一損耗可使開關(guān)電源的效率提高5%~10%。最有效的方法是軟開關(guān)技術(shù)或零電壓開關(guān)或零電流開關(guān)技術(shù)。
在眾多軟開關(guān)的方案中,比較實用的有大功率的全橋變換器,通常采用移相零電壓開關(guān)的控制方式,這種控制方式要求在初級側(cè)需附加一續(xù)流電感以確保開關(guān)管在零電壓狀態(tài)下導(dǎo)通,由于較大的有效值電流流過,這個附加電感將發(fā)熱(盡管比RC緩沖電路小得多),因而在低壓功率變換中并不采用。
無源無損耗緩沖電路的特點是不破壞常規(guī)PWM控制方式,設(shè)計/調(diào)試簡單。盡管如此,無源無損耗緩沖電路和準(zhǔn)諧振/零電壓開關(guān)工作方式也存在一些缺點,如僅能實現(xiàn)關(guān)斷軟開關(guān)以及在反激式變換器中不太適于大負(fù)載范圍變化。軟開關(guān)中有源箝位是提高單管正/反激變換器效率的有效方法,最初的專利限制現(xiàn)在已失效,可以普遍應(yīng)用。
國內(nèi)的很多開關(guān)電源在設(shè)計上對結(jié)構(gòu)設(shè)計的關(guān)注相對不夠,有時會出現(xiàn)電源內(nèi)的各部分溫升不均,有的地方過熱,有的地方幾乎沒有溫升,甚至PCB上產(chǎn)生較大的損耗。一個好的開關(guān)電源應(yīng)該是產(chǎn)生熱的元件均勻分布在PCB上,而且發(fā)熱元件的溫升基本一致,PCB應(yīng)有盡可能小的損耗,這在模塊電源和塑料外殼的Adapter的設(shè)計中尤為重要。
在開關(guān)電源的各種損耗中,電磁干擾所產(chǎn)生的損耗,在電源效率高到一定水平后將不容忽視。一方面電磁干擾本身消耗能量,特別是電源效率的提高往往需要軟開關(guān)技術(shù)或零電壓開關(guān)或零電流開關(guān)技術(shù)(無論是專門設(shè)置還是電路本身固有),應(yīng)用這些技術(shù)減緩了開關(guān)過程的電壓、電流的變化速率或消除了開關(guān)過程,電磁干擾變得很小,不需要像常規(guī)開關(guān)電源電路中需要專門設(shè)置抑制電磁干擾的電路(這個電路是存在損耗的)。
仔細(xì)分析,高效率功率變換看起來是很簡單的,甚至有些電路拓?fù)湓?0多年前就有介紹(如兩級變換拓?fù)浣Y(jié)構(gòu),早在UNITRODE82/83年數(shù)據(jù)手冊的ApplicationNote的AN19中就有介紹、TEK2235示波器中也采用了這種功率變換拓?fù)浣Y(jié)構(gòu)),但受當(dāng)時的技術(shù)水平,特別是人們認(rèn)識的限制(總是認(rèn)為兩級變換的效率比單級低,而事實上兩級變換可以實現(xiàn)事實上的固有的零電壓開關(guān),單級變換則需要特殊的附加電路和控制方式)而并沒有得到承認(rèn)和應(yīng)用。器件的性能和人們認(rèn)識的提高已經(jīng)使兩級變換作為高效率功率變換的主要方式之一。
隨著經(jīng)濟不斷發(fā)展計算機廣泛應(yīng)用,一些重要場所:如金融、信息、通訊、公共設(shè)備控制,對電源可靠性、穩(wěn)定性要求高,超大規(guī)模集成電路制造等產(chǎn)業(yè)對電源也有相當(dāng)高要求。
電子設(shè)備特別是計算機的不斷小型化,要求供電電源的體積隨之小型化,因而開關(guān)電源開始替代以笨重的工頻變壓器為特征的線性穩(wěn)壓電源,同時電源效率得到明顯提高。電源體積的減小意味著散熱能力的變差,因而要求電源的功耗變小,即在輸出功率不變的前提下,效率必須提高。
相同體積的電源的功率耗散基本相同,因此,欲得到更大的輸出功率,必須提高效率,同時,高的電源效率可以有效地減小功率半導(dǎo)體器件的應(yīng)力,有利于提高其可靠性。
開關(guān)電源的損耗主要為:無源元件損耗和有源元件損耗
開關(guān)損耗一直困惑著開關(guān)電源設(shè)計者,由于功率半導(dǎo)體器件在開關(guān)過程中,器件上同時存在電流、電壓,因而不可避免地存在開關(guān)損耗,如果開關(guān)電源中開關(guān)管和輸出整流二極管能實現(xiàn)零電壓開關(guān)或零電流開關(guān),則其效率可以明顯提高。
開關(guān)過程引起的開關(guān)損耗大致會占總輸入功率的5%~10%,大幅度降低或消除這一損耗可使開關(guān)電源的效率提高5%~10%。最有效的方法是軟開關(guān)技術(shù)或零電壓開關(guān)或零電流開關(guān)技術(shù)。
在眾多軟開關(guān)的方案中,比較實用的有大功率的全橋變換器,通常采用移相零電壓開關(guān)的控制方式,這種控制方式要求在初級側(cè)需附加一續(xù)流電感以確保開關(guān)管在零電壓狀態(tài)下導(dǎo)通,由于較大的有效值電流流過,這個附加電感將發(fā)熱(盡管比RC緩沖電路小得多),因而在低壓功率變換中并不采用。
無源無損耗緩沖電路的特點是不破壞常規(guī)PWM控制方式,設(shè)計/調(diào)試簡單。盡管如此,無源無損耗緩沖電路和準(zhǔn)諧振/零電壓開關(guān)工作方式也存在一些缺點,如僅能實現(xiàn)關(guān)斷軟開關(guān)以及在反激式變換器中不太適于大負(fù)載范圍變化。軟開關(guān)中有源箝位是提高單管正/反激變換器效率的有效方法,最初的專利限制現(xiàn)在已失效,可以普遍應(yīng)用。
國內(nèi)的很多開關(guān)電源在設(shè)計上對結(jié)構(gòu)設(shè)計的關(guān)注相對不夠,有時會出現(xiàn)電源內(nèi)的各部分溫升不均,有的地方過熱,有的地方幾乎沒有溫升,甚至PCB上產(chǎn)生較大的損耗。一個好的開關(guān)電源應(yīng)該是產(chǎn)生熱的元件均勻分布在PCB上,而且發(fā)熱元件的溫升基本一致,PCB應(yīng)有盡可能小的損耗,這在模塊電源和塑料外殼的Adapter的設(shè)計中尤為重要。
在開關(guān)電源的各種損耗中,電磁干擾所產(chǎn)生的損耗,在電源效率高到一定水平后將不容忽視。一方面電磁干擾本身消耗能量,特別是電源效率的提高往往需要軟開關(guān)技術(shù)或零電壓開關(guān)或零電流開關(guān)技術(shù)(無論是專門設(shè)置還是電路本身固有),應(yīng)用這些技術(shù)減緩了開關(guān)過程的電壓、電流的變化速率或消除了開關(guān)過程,電磁干擾變得很小,不需要像常規(guī)開關(guān)電源電路中需要專門設(shè)置抑制電磁干擾的電路(這個電路是存在損耗的)。
仔細(xì)分析,高效率功率變換看起來是很簡單的,甚至有些電路拓?fù)湓?0多年前就有介紹(如兩級變換拓?fù)浣Y(jié)構(gòu),早在UNITRODE82/83年數(shù)據(jù)手冊的ApplicationNote的AN19中就有介紹、TEK2235示波器中也采用了這種功率變換拓?fù)浣Y(jié)構(gòu)),但受當(dāng)時的技術(shù)水平,特別是人們認(rèn)識的限制(總是認(rèn)為兩級變換的效率比單級低,而事實上兩級變換可以實現(xiàn)事實上的固有的零電壓開關(guān),單級變換則需要特殊的附加電路和控制方式)而并沒有得到承認(rèn)和應(yīng)用。器件的性能和人們認(rèn)識的提高已經(jīng)使兩級變換作為高效率功率變換的主要方式之一。
【上一個】 我國開關(guān)電源行業(yè)的兩極化 | 【下一個】 電力電抗行業(yè)的節(jié)能潛力 |