開(kāi)關(guān)電源技術(shù)未來(lái)發(fā)展幾個(gè)方面

 通信業(yè)的迅速發(fā)展極大地推動(dòng)了通信電源的發(fā)展,開(kāi)關(guān)電源在通信系統(tǒng)中處于核心地位,并已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領(lǐng)域中,通常將高頻整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實(shí)現(xiàn)小型化,因而需要不斷提高開(kāi)關(guān)頻率和采用新的電路拓?fù)浣Y(jié)構(gòu),這就對(duì)高頻開(kāi)關(guān)電源技術(shù)提出了更高的要求。

  1 通信用高頻開(kāi)關(guān)電源技術(shù)的發(fā)展

  通信用高頻開(kāi)關(guān)電源技術(shù)的發(fā)展基本上可以體現(xiàn)在幾個(gè)方面:變換器拓?fù)、建模與仿真、數(shù)字化控制及磁集成。

  1.1 變換器拓?fù)?/P>

  軟開(kāi)關(guān)技術(shù)、功率因數(shù)校正技術(shù)及多電平技術(shù)是近年來(lái)變換器拓?fù)浞矫娴臒狳c(diǎn)。采用軟開(kāi)關(guān)技術(shù)可以有效的降低開(kāi)關(guān)損耗和開(kāi)關(guān)應(yīng)力,有助于變換器效率的提高;采用PFC技術(shù)可以提高AC/DC變換器的輸入功率因數(shù),減少對(duì)電網(wǎng)的諧波污染;而多電平技術(shù)主要應(yīng)用在通信電源三相輸入變換器中,可以有效降低開(kāi)關(guān)管的電壓應(yīng)力。同時(shí)由于輸入電壓高,采用適當(dāng)?shù)能涢_(kāi)關(guān)技術(shù)以降低開(kāi)關(guān)損耗,是多電平技術(shù)將來(lái)的重要研究方向。

  為了降低變換器的體積,需要提高開(kāi)關(guān)頻率而實(shí)現(xiàn)高的功率密度,必須使用較小尺寸的磁性材料及被動(dòng)元件,但是提高頻率將使MOSFET的開(kāi)關(guān)損耗與驅(qū)動(dòng)損耗大幅度增加,而軟開(kāi)關(guān)技術(shù)的應(yīng)用可以降低開(kāi)關(guān)損耗。目前的通信電源工程應(yīng)用最為廣泛的是有源鉗位ZVS技術(shù)、上世紀(jì)90年代初誕生的ZVS移相全橋技術(shù)及90年代后期提出的同步整流技術(shù)。

  1.1.1 ZVS 有源鉗位

  有源箝位技術(shù)歷經(jīng)三代,且都申報(bào)了專利。第一代為美國(guó)VICOR公司的有源箝位ZVS技術(shù),將DC/DC的工作頻率提高到1 MHZ,功率密度接近200 W/in3,然而其轉(zhuǎn)換效率未超過(guò)90 %。為了降低第一代有源箝位技術(shù)的成本,IPD公司申報(bào)了第二代有源箝位技術(shù)專利,其采用P溝道MOSFET,并在變壓器二次側(cè)用于forward電路拓?fù)涞挠性大槲,這使產(chǎn)品成本減低很多。但這種方法形成的MOSFET的零電壓開(kāi)關(guān)(ZVS)邊界條件較窄,而且PMOS工作頻率也不理想。為了讓磁能在磁芯復(fù)位時(shí)不白白消耗掉,一位美籍華人工程師于2001年申請(qǐng)了第三代有源箝位技術(shù)專利,其特點(diǎn)是在第二代有源箝位的基礎(chǔ)上將磁芯復(fù)位時(shí)釋放出的能量轉(zhuǎn)送至負(fù)載,所以實(shí)現(xiàn)了更高的轉(zhuǎn)換效率。它共有三個(gè)電路方案:其中一個(gè)方案可以采用N溝MOSFET,因而工作頻率可以更高,采用該技術(shù)可以將ZVS軟開(kāi)關(guān)、同步整流技術(shù)都結(jié)合在一起,因而其實(shí)現(xiàn)了高達(dá)92 %的效率及250 W/in3以上的功率密度。

  1.1.2 ZVS 移相全橋

  從20世紀(jì)90年代中期,ZVS移相全橋軟開(kāi)關(guān)技術(shù)已廣泛地應(yīng)用于中、大功率電源領(lǐng)域。該項(xiàng)技術(shù)在MOSFET的開(kāi)關(guān)速度不太理想時(shí),對(duì)變換器效率的提升起了很大作用,但其缺點(diǎn)也不少。第一個(gè)缺點(diǎn)是增加一個(gè)諧振電感,其導(dǎo)致一定的體積與損耗,并且諧振電感的電氣參數(shù)需要保持一致性,這在制造過(guò)程中是比較難控制的;第二個(gè)缺點(diǎn)是丟失了有效的占空比[1]。此外,由于同步整流更便于提高變換器的效率,而移相全橋?qū)Χ蝹?cè)同步整流的控制效果并不理想。最初的PWM ZVS移相全橋控制器,UC3875/9及UCC3895僅控制初級(jí),需另加邏輯電路以提供準(zhǔn)確的次極同步整流控制信號(hào);如今最新的移相全橋PWM控制器如LTC1922/1、LTC3722-1/-2,雖然已增加二次側(cè)同步整流控制信號(hào),但仍不能有效地達(dá)到二次側(cè)的ZVS/ZCS同步整流,但這是提高變換器效率最有效的措施之一。而LTC3722-1/-2的另一個(gè)重大改進(jìn)是可以減小諧振電感的電感量,這不僅降低了諧振電感的體積及其損耗,占空比的丟失也所改進(jìn)。

  1.1.3 同步整流

  同步整流包括自驅(qū)動(dòng)與外部驅(qū)動(dòng)。自驅(qū)動(dòng)同步整流方法簡(jiǎn)單易行,但是次級(jí)電壓波形容易受到變壓器漏感等諸多因素的影響,造成批量生產(chǎn)時(shí)可靠性較低而較少應(yīng)用于實(shí)際產(chǎn)品中。對(duì)于12 V以上至20 V左右輸出電壓的變換則多采用專門的外部驅(qū)動(dòng)IC,這樣可以達(dá)到較好的電氣性能與更高的可靠性。

  TI公司提出了預(yù)測(cè)驅(qū)動(dòng)策略的芯片UCC27221/2,動(dòng)態(tài)調(diào)節(jié)死區(qū)時(shí)間以降低體二極管的導(dǎo)通損耗。ST公司也設(shè)計(jì)出類似的芯片STSR2/3,不僅用于反激也適用于正激,同時(shí)改進(jìn)了連續(xù)與斷續(xù)導(dǎo)通模式的性能。美國(guó)電力電子系統(tǒng)中心(CPES)研究了各種諧振驅(qū)動(dòng)拓?fù)湟越档万?qū)動(dòng)損耗[2],并于1997年提出一種新型的同步整流電路,稱為準(zhǔn)方波同步整流,可以較大地降低同步整流管體二極管的導(dǎo)通損耗與反向恢復(fù)損耗,并且容易實(shí)現(xiàn)初級(jí)主開(kāi)關(guān)管的軟開(kāi)關(guān)[3]。凌特公司推出的同步整流控制芯片 LTC3900和LTC3901可以更好地應(yīng)用于正激、推挽及全橋拓?fù)渲小?/P>

  ZVS及ZCS同步整流技術(shù)也已開(kāi)始應(yīng)用,例如有源鉗位正激電路的同步整流驅(qū)動(dòng)(NCP1560),雙晶體管正激電路的同步整流驅(qū)動(dòng)芯片LTC1681及LTC1698,但其都未取得對(duì)稱型電路拓樸ZVS/ZCS同步整流的優(yōu)良效果。

  1.2 建模與仿真

  開(kāi)關(guān)型變換器主要有小信號(hào)與大信號(hào)分析兩種建模方法。

  小信號(hào)分析法:主要是狀態(tài)空間平均法[4],由美國(guó)加里福尼亞理工學(xué)院的R.D.Middlebrook于1976年提出,可以說(shuō)這是電力電子學(xué)領(lǐng)域建模分析的第一個(gè)真正意義的重大突破。后來(lái)出現(xiàn)的如電流注入等效電路法、等效受控源法(該法由我國(guó)學(xué)者張興柱于1986年提出)、三端開(kāi)關(guān)器件法等,這些均屬于電路平均法的范疇。平均法的缺點(diǎn)是明顯的,對(duì)信號(hào)進(jìn)行了平均處理而不能有效地進(jìn)行紋波分析;不能準(zhǔn)確地進(jìn)行穩(wěn)定性分析;對(duì)諧振類變換器可能不大適合;關(guān)鍵的一點(diǎn)是,平均法所得出的模型與開(kāi)關(guān)頻率無(wú)關(guān),且適用條件是電路中的電感電容等產(chǎn)生的自然頻率必須要遠(yuǎn)低于開(kāi)關(guān)頻率,準(zhǔn)確性才會(huì)較高。

  大信號(hào)分析法:有解析法,相平面法,大信號(hào)等效電路模型法,開(kāi)關(guān)信號(hào)流法,n次諧波三端口模型法,KBM法及通用平均法。還有一個(gè)是我國(guó)華南理工大學(xué)教授丘水生先生于1994年提出的等效小參量信號(hào)分析法[5],不僅適用于PWM變換器也適用于諧振類變換器,并且能夠進(jìn)行輸出的紋波分析。

  建模的目的是為了仿真,繼而進(jìn)行穩(wěn)定性分析。1978年,R.Keller首次運(yùn)用R.D.Middlebrook的狀態(tài)空間平均理論進(jìn)行開(kāi)關(guān)電源的SPICE仿真[6]。近30年來(lái),在開(kāi)關(guān)電源的平均SPICE模型的建模方面,許多學(xué)者都建立了各種各樣的模型理論,從而形成了各種SPICE模型。這些模型各有所長(zhǎng),比較有代表性的有:Dr.SamBenYaakov的開(kāi)關(guān)電感模型;Dr.RayRidley的模型;基于Dr.VatcheVorperian的Orcad9.1的開(kāi)關(guān)電源平均Pspice模型;基于Steven Sandler的ICAP4的開(kāi)關(guān)電源平均Isspice模型;基于Dr. VincentG.Bello的Cadence的開(kāi)關(guān)電源平均模型等等。在使用這些模型的基礎(chǔ)上,結(jié)合變換器的主要參數(shù)進(jìn)行宏模型的構(gòu)建,并利用所建模型構(gòu)成的DC/DC變換器在專業(yè)的電路仿真軟件(Matlab、Pspice等)平臺(tái)上進(jìn)行直流分析、小信號(hào)分析以及閉環(huán)大信號(hào)瞬態(tài)分析。

  由于變換器的拓?fù)淙招略庐悾l(fā)展速度極快,相應(yīng)地,對(duì)變換器建模的要求也越來(lái)越嚴(yán)格?梢哉f(shuō),變換器的建模必須要趕上變換器拓?fù)涞陌l(fā)展步伐,才能更準(zhǔn)確地應(yīng)用于工程實(shí)踐。

  1.3 數(shù)字化控制

  數(shù)字化的簡(jiǎn)單應(yīng)用主要是保護(hù)與監(jiān)控電路,以及與系統(tǒng)的通信,目前已大量地應(yīng)用于通信電源系統(tǒng)中。其可以取代很多模擬電路,完成電源的起動(dòng)、輸入與輸出的過(guò)、欠壓保護(hù)、輸出的過(guò)流與短路保護(hù),及過(guò)熱保護(hù)等,通過(guò)特定的介面電路,也能完成與系統(tǒng)間的通訊與顯示。

  數(shù)字化的更先進(jìn)應(yīng)用包含不但實(shí)現(xiàn)完善的保護(hù)與監(jiān)控功能,也能輸出PWM波,通過(guò)驅(qū)動(dòng)電路控制功率開(kāi)關(guān)器件,并實(shí)現(xiàn)閉環(huán)控制功能。目前,TI、ST及Motorola公司等均推出了專用的電機(jī)與運(yùn)動(dòng)控制DSP芯片。現(xiàn)階段通信電源的數(shù)字化主要采取模擬與數(shù)字相結(jié)合的形式,PWM部分仍然采用專門的模擬芯片,而DSP芯片主要參與占空比控制,和頻率設(shè)置、輸出電壓的調(diào)節(jié)及保護(hù)與監(jiān)控等功能。

  為了達(dá)到更快的動(dòng)態(tài)響應(yīng),許多先進(jìn)的控制方法已逐漸提出。例如,安森美公司提出改進(jìn)型V2控制,英特矽爾公司提出Active-droop控制,Semtech公司提出電荷控制,仙童公司提出Valley電流控制,IR公司提出多相控制,并且美國(guó)的多所大學(xué)也提出了多種其他的控制思想[7,8,9]。數(shù)字控制可以提高系統(tǒng)的靈活性,提供更好的通信介面、故障診斷能力、及抗干擾能力。但是,在精密的通信電源中,控制精度、參數(shù)漂移、電流檢測(cè)與均流,及控制延遲等因素將是需要急待解決的實(shí)際問(wèn)題。

  1.4 磁集成

  隨著開(kāi)關(guān)頻率的提高,開(kāi)關(guān)變換器的體積隨之減少,功率密度也得到大幅提升,但開(kāi)關(guān)損耗將隨之增加,并且將使用更多的磁性器件,因而占據(jù)更多的空間。

  國(guó)外對(duì)于磁性元件集成技術(shù)的研究較為成熟,有些廠商已將此技術(shù)應(yīng)用于實(shí)際的通信電源中。其實(shí)磁集成并不是一個(gè)新概念,早在20世紀(jì)70年代末,Cuk在提出Cuk變換器時(shí)就已提出磁集成的思想。自1995年至今,美國(guó)電力電子系統(tǒng)并中心(CPES)對(duì)磁性器件集成作了很多的研究工作,使用耦合電感的概念對(duì)多相BUCK電感集成做了深入研究[10,11,12],且應(yīng)用于各種不同類型的變換器中。2002年,香港大學(xué)Yim-Shu Lee等人也提出一系列對(duì)于磁集成技術(shù)的探討與設(shè)計(jì)[13,14,15]。

  常規(guī)的磁性元件設(shè)計(jì)方法極其繁瑣且需要從不同的角度來(lái)考慮,如磁心的大小選擇,材質(zhì)與繞組的確定,及鐵損和銅損的評(píng)估等。但是磁集成技術(shù)除此之外,還必須考慮磁通不平衡的問(wèn)題,因?yàn)榇磐ǚ植荚阼F心的每一部分其等效總磁通量是不同的,有些部分可能會(huì)提前飽和。因此,磁性器件集成的分析與研究將會(huì)更加復(fù)雜與困難。但是,其所帶來(lái)的高功率密度的優(yōu)勢(shì),必是將來(lái)通信電源的一大發(fā)展趨勢(shì)。

  1.5 制造工藝

  通信用高頻開(kāi)關(guān)電源的制造工藝相當(dāng)復(fù)雜,并且直接影響到電源系統(tǒng)的電氣功能、電磁兼容性及可靠性,而可靠性是通信電源的首要指標(biāo)。生產(chǎn)制造過(guò)程中完備的檢測(cè)手段,齊全的工藝監(jiān)控點(diǎn)與防靜電等措施的采用在很大程度上延續(xù)了產(chǎn)品最佳的設(shè)計(jì)性能,而SMD貼片器件的廣泛使用將可以大大提高焊接的可靠性。歐美國(guó)家將從2006年起對(duì)電子產(chǎn)品要求無(wú)鉛工藝,這將對(duì)通信電源中器件的選用及生產(chǎn)制造過(guò)程的控制提出更高、更嚴(yán)格的要求。

  目前更為吸引的技術(shù)是美國(guó)電力電子系統(tǒng)中心(CPEC)在近幾年提出的電力電子集成模塊(IPEM)的概念[16],俗稱“積木”。采用先進(jìn)的封裝技術(shù)而降低寄生因素以改進(jìn)電路中的電壓振鈴 與效率,將驅(qū)動(dòng)電路與功率器件集成在一起以提高驅(qū)動(dòng)的速度因而降低開(kāi)關(guān)損耗。電力電子集成技術(shù)不僅能夠改進(jìn)瞬態(tài)電壓的調(diào)節(jié),也能改進(jìn)功率密度與系統(tǒng)的效率。但是,這樣的集成模塊目前存在許多挑戰(zhàn),主要是被動(dòng)與主動(dòng)器件的集成方式,并且較難達(dá)到最佳的熱設(shè)計(jì)。CPEC對(duì)電力電子集成技術(shù)進(jìn)行了多年的研究,提出了許多有用的方法、結(jié)構(gòu)與模型。


【上一個(gè)】 電源模塊啟動(dòng)困難怎么辦?其原因是什么? 【下一個(gè)】 開(kāi)關(guān)電源的內(nèi)部干擾與外部干擾


 ^ 開(kāi)關(guān)電源技術(shù)未來(lái)發(fā)展幾個(gè)方面 ^ 開(kāi)關(guān)電源技術(shù)未來(lái)發(fā)展幾個(gè)方面
 ^ 開(kāi)關(guān)電源技術(shù)未來(lái)發(fā)展幾個(gè)方面 ^ 開(kāi)關(guān)電源技術(shù)未來(lái)發(fā)展幾個(gè)方面